	4
	1 2
	LID-SPECIFIC DESIGN REQUIREMENTS
P	ONCE A LID PROJECT HAS BEEN IDENTIFIED, THERE ARE GENERAL SITE-SPECIFIC CONSIDERATIONS THAT NEED TO BE INVESTIGATED. ALL LANL PROJECTS ARE REQUIRED TO
	USE THE PERMITS REQUIREMENTS- IDENTIFICATION (PR-ID) AND THE EXCAVATION/ FILL/ SOIL DISTURBANCE PERMIT REQUEST (EX-ID) PROCESSES TO IDENTIFY PROJECT ISSUES AND DEOLUDEMENTS
	REQUIREMENTS.
	FUNCTION IN LANL STORM WATER SYSTEM
	UNDERSTANDING THE FUNCTION OF THE GREEN INFRASTRUCTURE (GI) FEATURE IS BASIC TO GI DESIGN. THE GI POTENTIAL ROLE AND FUNCTION RELATIVE TO THE OVERALL STORM WATER
	SYSTEM/ LID HELPS CLARIFY THE CRITICAL CONSIDERATIONS THAT NEED TO BE ADDRESSED IN THE SPECIFIC DESIGN.
	HOW LARGE IS THE CAPTURE AREA THAT CONTRIBUTES STORM WATER TO THIS GI
	LOCATION? ARE SURFACE SLOPE AND GRADIENT CONTROLS NEEDED?
	 ARE SORFACE SLOPE AND GRADIENT CONTROLS NEEDED? IS IT POSSIBLE TO SPREAD AND REDUCE THE POLLUTANT CONCENTRATION OF STORM
	WATER?
	 IS IT POSSIBLE TO INFILTRATE THE STORM WATER WITHIN THE GI FEATURE? HOW WILL THE VEGETATED COMPONENT OF GI WORK IN THIS PROJECT?
С	GENERAL DESIGN REQUIREMENTS: LANL PROJECTS SHOULD INCORPORATE THESE GENERAL DESIGN REQUIREMENTS FOR LID AND
	GI COMPONENTS.
	 IDENTIFY DRAINAGE AREAS FOR EACH CONTROL MEASURE TO BE DESIGNED. CALCULATE FLOW-RATES, VOLUMES, AND VELOCITIES TO SUPPORT SIZING OF LID
	FEATURES.
	-COMPLY WITH THE REQUIREMENTS IDENTIFIED IN LANL ENGINEERING STANDARDS MANUAL (ESM), CHAPTER 3 (CIVIL).
┝	-IDENTIFY THE APPROPRIATE STORM EVENT (E.G., PRE- DEVELOPMENT HYDROLOGY, WATER QUALITY STORM, ETC.) FOR DESIGN USE.
	CALCULATE CHANNEL FLOW VELOCITY AND SHEAR STRESS FOR LID CONTROL DESIGN AND
	 MATERIAL SELECTION (E.G., ROCK SIZING, TURF REINFORCEMENT MAT, ETC). LID FEATURES SHALL BE DESIGNED TO INFILTRATE/ DISCHARGE PONDED STORM WATER
	WITHIN 96 HOURS.
	SLOPES
	UNDERSTANDING THE SLOPES AND GRADIENTS SURROUNDING AND WITHIN THE PROJECT AREA AFFECTS SELECTION OF STRATEGIES THAT ARE THE BEST SUITED TO THE SPECIFIC SITUATION.
в	FLATTER SLOPES ARE BETTER LOCATIONS FOR STRATEGIES THAT STORE OR INFILTRATE STORM WATER.
	STEEPER SLOPES MOST OFTEN REQUIRE FLOW AND ENERGY DISSIPATION AS MAJOR
	 COMPONENTS OF THE DESIGN TO HELP PREVENT SOIL MIGRATION AND EROSION. SLOPES SHOULD BE STABILIZED WITH APPROPRIATE EROSION CONTROL MEASURES (E.G.,
	HYDRO- MULCH, TURF REINFORCEMENT MAT, ROCK, ETC.) BASED ON SLOPE STEEPNESS AND SITE CONDITIONS.
A	
1	

LID-SPECIFIC DESIGN REQUIREMENTS CONTINUED:

SOILS

SOILS INFORMATION IS IMPORTANT IN DETERMINING INFILTRATION AND STRUCTURAL DESIGN OPTIONS FOR LID/ GI. TESTING WILL BE DETERMINED ON A CASE BY CASE BASIS BY EPC-CP.

- PERFORM SOILS PERCOLATION FIELD TESTS PER ASTM D 3385 OR OTHER TEST METHOD APPROVED BY EPC-CP.
 - -OPTIMAL INFILTRATION RATE IS >0.5 INCHES/HOUR.
- CHECK FOR ERODIBILITY TO EVALUATE NEEDS FOR FLOW ENERGY DISSIPATION AND SEDIMENTATION POTENTIAL AND/ OR EROSION.
- EVALUATE THE NEED FOR SOIL AMENDMENTS TO SUPPORT VEGETATION GROWTH.
- SOIL COMPACTION:
 - -TO PREVENT OVER COMPACTION, MINIMIZE USE OF HEAVY EQUIPMENT ON SOILS TO BE USED FOR INFILTRATION.
 - -FOR AREAS INTENDED TO INFILTRATE STORM WATER FLOWS, NATIVE SOILS SHALL NOT BE COMPACTED ANY GREATER THAN 85% MAXIMUM DRY DENSITY.
 - -SOIL BENEATH STRUCTURAL COMPONENTS (E.G., FOOTINGS, CONCRETE WALLS, ETC.) SHALL BE COMPACTED TO 90% OR GREATER DRY DENSITY.

VEGETATION

INCLUDING AND ESTABLISHING VEGETATION IS AN IMPORTANT FUNCTIONAL COMPONENT OF LID/ GI.
DISTURBED AREAS SHALL BE STABILIZED WITH PERENNIAL VEGETATION.

• VEGETATION SHOULD BE DROUGHT TOLERANT AND ABLE TO WITHSTAND PERIODIC INUNDATION.

UTILITIES

IN MORE DEVELOPED AREAS OF LANL, LOCATIONS FOR GI ARE OFTEN UTILITY CORRIDORS. INVESTIGATING UTILITIES FOR ALIGNMENT AND BURY DEPTH IS AN IMPORTANT PART OF BASIC SITE ANALYSIS.

- OBTAIN MAPPING OF EXISTING AND ABANDONED UTILITIES WITHIN THE PROJECT AREA AS EARLY AS POSSIBLE DURING THE PROJECT PLANNING AND DESIGN PHASE.
- OBTAIN INFORMATION FROM LANL INFRASTRUCTURE AND UTILITIES GROUPS REGARDING ALIGNMENTS, BURY DEPTHS AND LIMITATIONS FOR ACTIVITIES SUCH AS GRADE MODIFICATIONS AND RUNOFF INFILTRATION CONSIDERATIONS.
- POTHOLING WILL BE NECESSARY TO CONFIRM LOCATION AND DEPTH OF BURIED UTILITIES.

ACCESS

LID AND GI IMPROVEMENTS NEED TO INCLUDE SECURITY AND ACCESS REQUIREMENTS.

- IDENTIFY SECURITY AND SAFETY ACCESS REQUIREMENTS AT THE EARLIEST STAGES OF
 PROJECT PLANNING.
- PROVIDE ACCESS FOR MAINTENANCE.

0					R [DCF] [DRN] [FCR]					
NO	DATE	CLASS REV	DC	DESC	RIPTION	DWN	DSGN	CHKD	SUB	APP
	EN	GIN	IEE	RING	STAN	D	۱R	DS	S	
<u> </u>		CIVIL				DRAWN				
	LOW			MPACT DEVELOPMENT			DESIGN T. LEI			-
		SPEC	SPECIFIC DESIGN REQUIREMENTS				HECKE	D	RAEL	
TA	-XX				BLDG X>	xx [DATE	02-1	10-20	
	MITTED				APPROVED FOR REL			СН		
SUB DIS	CIPLINE POC	: JOHN O'BF	KIEN		STANDARDS WANA					
SUBI DIS		: JOHN O'BF				SHEET		1		
-	• Los A			PO Box 1663 Los Alamos, No	ew Mexico 87545	SHEET	2	1 OF	16	6
D.C.	• LOS A			Los Alamos, No R: DONALD YAR	ew Mexico 87545	SHEET		-		5

6