TABLE OF CONTENTS

G4010 SITE ELECTRICAL DISTRIBUTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>Codes and Standards</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>Distribution System Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>4.0</td>
<td>Design Documentation</td>
<td>7</td>
</tr>
<tr>
<td>5.0</td>
<td>Overhead Lines</td>
<td>11</td>
</tr>
<tr>
<td>6.0</td>
<td>Medium Voltage Cable</td>
<td>15</td>
</tr>
<tr>
<td>7.0</td>
<td>Underground Construction</td>
<td>16</td>
</tr>
<tr>
<td>8.0</td>
<td>Padmount Switches</td>
<td>19</td>
</tr>
<tr>
<td>9.0</td>
<td>Metal-Enclosed Interrupter Switchgear</td>
<td>20</td>
</tr>
<tr>
<td>10.0</td>
<td>Metal-Clad Switchgear</td>
<td>21</td>
</tr>
<tr>
<td>11.0</td>
<td>Medium-Voltage Transformers</td>
<td>21</td>
</tr>
<tr>
<td>12.0</td>
<td>Unit Substations</td>
<td>26</td>
</tr>
<tr>
<td>13.0</td>
<td>Fusing</td>
<td>27</td>
</tr>
<tr>
<td>14.0</td>
<td>Lightning Protection</td>
<td>28</td>
</tr>
<tr>
<td>15.0</td>
<td>Primary Metering</td>
<td>28</td>
</tr>
<tr>
<td>16.0</td>
<td>Grounding</td>
<td>29</td>
</tr>
<tr>
<td>17.0</td>
<td>Rights-of-Way</td>
<td>29</td>
</tr>
<tr>
<td>18.0</td>
<td>Joint Use</td>
<td>33</td>
</tr>
<tr>
<td>19.0</td>
<td>Environmental Protection</td>
<td>33</td>
</tr>
<tr>
<td>20.0</td>
<td>Wildlife Protection</td>
<td>34</td>
</tr>
</tbody>
</table>

This mandatory functional series document is available online at http://engstandards.lanl.gov.

It derives from P342, Engineering Standards, which is issued under the authority of the Engineering Services Division as part of the Conduct of Engineering program implementation at the Laboratory.
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
<th>POC</th>
<th>OIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11/18/02</td>
<td>Standard created - initial issue.</td>
<td>David W. Powell, FWO-SEM</td>
<td>Kurt Beckman, FWO-SEM</td>
</tr>
<tr>
<td>1</td>
<td>10/27/06</td>
<td>Clarified respective roles of design engineer, constructor, and LANL SSS on facility construction projects; added description of typical distribution system configurations; updated referenced standards; added requirement for pole grounding calculations; added requirements for drawings showing padmount equipment clearances, access, and protection; added IEEE Std 1410 as requirement; clarified transformer peak loading capacity calculation; clarified transformer location and access requirements; updated references to LANL Master Specifications; added references to LANL Standard Drawings.</td>
<td>David W. Powell, FM&E-DES</td>
<td>Kirk Christensen, CENG-OFF</td>
</tr>
<tr>
<td>2</td>
<td>6/11/09</td>
<td>Updated codes and standards; added requirements to calculate ampacity of underground conductors in accordance with NEC Annex B, the Neher-McGrath formula, IEEE Std 835, or approved software using a soil Rho of 250; added requirement that distribution transformers meet efficiency requirements in 10 CFR 431 Subpart K; limited number of pad-mounted transformer secondary conductors to IEEE C55.12.22 terminal capacity; added requirements for separation between outdoor transformers and equipment, updated environmental protection and wildlife protection requirements.</td>
<td>David W. Powell, ES-DE</td>
<td>Gary Read, CENG-OFF</td>
</tr>
<tr>
<td>3</td>
<td>8/20/10</td>
<td>"Infrastructure" ductbanks must now contain one duct dedicated to power utility communications; added requirements to limit structures in electrical utility rights of way. Document number changes.</td>
<td>David W. Powell, ES-DE</td>
<td>Larry Goen, CENG-OFF</td>
</tr>
<tr>
<td>4</td>
<td>01/15/19</td>
<td>Added ETAP use and requirements to design foundations and seismic anchors for utility equipment; changed standard transformer dielectric cooling fluid from mineral oil to bio-based, non-toxic, biodegradable, natural ester less-flammable liquid; other changes throughout.</td>
<td>Eric Stromberg, ES-EPD</td>
<td>Larry Goen, ES-DO</td>
</tr>
</tbody>
</table>
G4010 SITE ELECTRICAL DISTRIBUTION

1.0 INTRODUCTION

1.1 Scope

A. This Section covers the supply lines and equipment employed by the LANL Utilities and Infrastructure Group (hereafter “LANL Utilities”) in the exercise of its function as a utility including:

1. Overhead power distribution (15 kV) and transmission (115 kV)
2. Underground power distribution
3. Ductbanks and manholes
4. Unit substations (primary switch and transformer)
5. Overhead service laterals.

B. This Section covers the LANL utility equipment up to the service point\(^2\).

C. The requirements of this Section apply to all new systems and modifications to existing systems, except those waived or modified by the LANL ESM Electrical Point of Contact (POC) in consultation with LANL Utilities (ES-UI).

D. This Section does not apply to:

1. Low-voltage systems “downstream” of the service point, except to the extent that these systems may be installed in risers or share pole space with the distribution systems under a joint use arrangement.
2. LANL 115 kV utility substations (ETA, WTA, TA-3, TA-53, and TA-71\(^3\)).
3. LANL communication lines, except to the extent that these systems may share pole space with the distribution systems under a joint use agreement. Refer to ESM Ch 19 Section G50.
4. Systems constructed for temporary experimental purposes and not connected to the laboratory distribution or transmission system.

1.2 Intent

A. This Section outlines the requirements for Site Electrical Distribution at the Los Alamos National Laboratory that were applicable at the time of publication. LANL recognizes that the state of the art in electrical materials, equipment, and design practices continues to advance. To take advantage of these advances, LANL may, on a case-by-case basis, consider alternative methods to the practices presented here. Such alternate methods must be approved in writing by LANL Utilities and the Chapter 7 POC in advance of their implementation.

B. For the above situation and other direction to contact LANL Utilities or ES-UI within this Section, send an email to electrical_utilities@lanl.gov.

C. Italicized text\(^4\) indicates provisions considered desirable, but not mandatory.

1 15 kV is a class of equipment. The actual voltage, at LANL, is from 13.2 kV to 13.8 kV.
2 The service point is defined in ESM Chapter 7 Section D5010, Section 2.2.
3 TA-71 is a switching station only. It is not a substation because it has no power transformers.
4 Italics also used to set off document titles.
1.3 Execution

A. LANL Utilities will furnish, install, test, operate, and maintain electrical utility equipment such as pad-mounted transformers, pad-mounted sectionalizing switchgear, medium-voltage cable, and aerial distribution material.

B. In facility construction projects, the design engineer shall calculate electrical loads; select utility equipment; coordinate requirements with LANL Utilities; and design equipment foundations, utility ductbanks, and utility manholes. All designs shall be sent to Utilities Engineering for review, comments, and approval, prior to material procurement.

C. In facility construction projects the subcontractor will install equipment foundations, ductbanks, and utility manholes. Final tie-ins will be completed by LANL UI. *Integrated equipment, such as secondary unit substations, will usually be part of the construction contract.*

1. Equipment may be furnished by LANL UI or it may be furnished by the Subcontractor, with the approval of LANL UI.

2.0 CODES AND STANDARDS

2.1 General Requirements

A. Comply with the applicable portions of the adopted edition of each code and standard listed below or referenced elsewhere in this Section, in effect at the time definitive design work commences, unless otherwise noted in the Management and Operating Contract for the LANL.

B. If there is a conflict between Codes, Standards, or requirements in this Section, contact the LANL ESM Electrical POC for assistance in resolving the conflict. A requirement in this Section that exceeds a minimum Code or Standard requirement is not considered a conflict, but a difference.

C. See ESM Ch. 1 Section Z10 for further discussion on the concepts above, and link to contract.

2.2 American Society of Civil Engineers

A. ASCE 7 – *Minimum Design Loads for Buildings and Other Structures*
 Note: Unless the component in question is in, or attached to, an occupied structure it is not in the scope of ASCE 7.

B. ASCE 91 – *Design of Guyed Electrical Transmission Structures*

2.3 Edison Electric Institute

 https://www.nrc.gov/docs/ML1224/ML12243A391.pdf

2.4 Federal Regulations and Laws

A. 10 CFR 431 Subpart K – *Distribution Transformers*

B. 40 CFR 112 – *Oil Pollution Prevention*

C. 16 USC 668-668d – *Bald Eagle Protection Act of 1940*

D. 16 USC 703-711 – *Migratory Bird Treaty Act of 1918*

E. 16 USC 1531 – *Endangered Species Act of 1973*
2.5 Institute of Electrical and Electronics Engineers (IEEE)\(^5\)

B. IEEE Std C37.20.2 – Standard for Metal-Clad Switchgear
C. IEEE Std C37.20.3 – Standard for Metal-Enclosed Interrupter Switchgear
E. IEEE Std C37.74 – Standard Requirements for Subsurface, Vault, and Pad-Mounted Load-Interrupter Switchgear and Fused Load-Interrupter Switchgear for Alternating Current Systems up to 38 kV (ANSI)
F. IEEE C57.12.22 – Transformers - Pad-Mounted, Compartmental-Type, Self-Cooled Three-Phase Distribution Transformers With High-Voltage Bushings, 2500 kVA and Smaller: High Voltage, 34 500 Grd Y/19 920 Volts and Below; Low Voltage, 480 Volts and Below
G. IEEE Std C57.91 – Guide for Loading Mineral-Oil-Immersed Transformers (ANSI)
H. IEEE Std C57.96 – Guide for Loading Dry-Type Distribution and Power Transformers
J. IEEE Std 48 – Test Procedures and Requirements for Alternating-Current Cable Terminations 2.5kV Through 765 kV.
L. IEEE Std 242 – Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
O. IEEE Std 835 – Standard Power Cable Ampacity Tables
Q. IEEE Std 998 – Guide for Direct Lightning Stroke Shielding of Substations (ANSI)
R. IEEE Std 1048 – Guide for Protective Grounding of Power Lines
S. IEEE Std 1243 – Guide for Improving the Lightning Performance of Transmission Lines (ANSI)
T. IEEE Std 1410 – Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines (ANSI)

2.6 Insulated Cable Engineers Association, Inc.

A. ICEA S-93-639 – 5-46kV Shielded Power Cables for Use in the Transmission and Distribution of Electric Energy (also NEMA WC 74)

2.7 Los Alamos National Laboratory

2.8 National Fire Protection Association
A. NFPA 70™ – National Electrical Code® (NEC)
B. NFPA 70E – Standard for Electrical Safety in the Workplace
C. NFPA 780 – Standard for the Installation of Lightning Protection Systems

2.9 US Department of Agriculture [www.usda.gov/rus/electric/bulletins.htm]
A. RUS Bulletin 1724E-150 – Unguyed Distribution Poles – Strength Requirements
B. RUS Bulletin 1724E-151– Mechanical Loading on Distribution Crossarms
E. RUS Bulletin 1724E-154 – Distribution Conductor Clearances and Span Limitations
I. RUS Bulletin 1728F-806 – Specifications and Drawings for Underground Electric Distribution
K. RUS Bulletin 1728H-702 – Specifications for Quality Control and Inspection of Timber Products

3.0 DISTRIBUTION SYSTEM CHARACTERISTICS

3.1 System Operating Voltages
A. The LANL distribution system is supplied by 115–13.8Y/7.97 kV power transformers.
B. System loads (principally transformers) are connected to operate at a nominal voltage of 13.2–13.8 kV. No line-to-neutral loads are supported on the 15 kV system. All single-phase loads are connected line-to-line.6

3.2 Basic Impulse Level (BIL)
A. Equipment installed on the LANL distribution system must have a minimum basic impulse rating (BIL) of 110 kV (at sea level), 95 kV (at 7500 feet).

3.3 System Grounding
A. The LANL distribution system is constructed as a multigrounded system. The neutrals of transformers that supply the 15 kV system are solidly grounded7.
B. Overhead distribution lines carry an electrically-continuous static ground wire. Static ground wires are connected to the grounding electrode systems in the supply substations and are grounded at each distribution structure.
C. Underground cable systems carry a separate grounding conductor (typically a 4/0 AWG bare copper conductor embedded in the concrete duct bank).

6 The secondaries of the 115 kV power transformers are rated at 13.8 kV. The primaries of the load transformers are rated at 13.2 kV. The system operates between 13.2kV and 13.8kV depending on loading.
7 LANL practice is to supply only phase-to-phase loads on the 15kV system. No phase-to-neutral loads are supported on the 15 kV system.
Note: This is practical only because there are no phase-to-neutral loads on the system. If there were phase-to-neutral loads, the 4/0 conductor in the duct bank would cause circulating currents.

3.4 Typical Distribution System Configurations

A. The distribution system in developed technical areas is typically underground and configured as one or more primary loop systems.9
 1. Each loop circuit is fed from two utility substation circuit breakers; some loops are fed from different substations.
 2. Pad-mounted sectionalizing switchgear is used as the loop switches and as isolation switches for individual transformer loads.
 3. System is operated as an open loop.

B. The distribution system in less developed areas is typically aerial and configured as a radial system.10
 1. New facilities typically have building transformers supplied by underground circuits originating at primary riser poles.
 2. Older facilities and some small new facilities will be supplied by pole-mounted distribution transformers.

4.0 DESIGN DOCUMENTATION

4.1 Calculations

Provide calculations for the following.

A. Unit Substations: Refer to Sections D5000 and D5010.

B. Overhead lines
 1. Load analysis and conductor selection
 2. Conductor sag and tension, according to conductor type and size.
 a. Perform calculations for phase conductors and static ground wires
 b. Limit conductor tensions as required by NESC Rules 261H through M. Note that the strength of insulators and other components may limit the tension of the conductor.
 3. Pole strength requirements.
 a. Base calculations on wood species, construction grade, and loading.
 b. Limit stresses in poles and crossarms in accordance with NESC Section 26.
 4. Enter new distribution circuits and/or extensions to existing circuits into ETAP. All final calculations and/or studies are to be provided to ES-UI for final approval and incorporation into the master ETAP file.
 5. Alternative designs
 a. For pole structures other than those illustrated in the LANL Standard Details, provide complete engineering analysis as described in the

8 Although these configurations have been typical, new service configurations are completely dependent upon location. Coordinate with LANL UI as to the design of each new service.
9 Refer to IEEE Std 141 §2.4.2.4.
10 Refer to IEEE Std 141 §2.4.2.1.
applicable RUS Bulletin(s). Provide calculations to establish impedance characteristics of the alternative conductor arrangement.

C. Underground lines
 1. Load analysis and cable selection
 2. Enter new distribution circuits and/or extensions to existing circuits into ETAP. All final calculations and/or studies are to be provided to ES-UI for final approval and incorporation into the master ETAP file.
 3. Cable ampacity
 a. Limit conductor temperatures to 90°C.11
 b. Determine ampacity in accordance with IEEE 835.12
 4. Pulling tensions, sidewall pressure and jam ratio13
 a. Limit pulling tension to 0.008 lb/cmil for copper conductors14 pulled by pulling eyes or pulling bolts (pulling tension applied directly to the conductor).
 b. Limit pulling tension to 1000 lb for jacketed cables pulled by cable grips15.
 c. Sidewall pressure (in pounds per foot) is the tension on the cable coming out of a bend (in pounds) divided by the inside radius of the bend (in feet). Limit sidewall pressure to the values given in Table G4010-116.

Table G4010-1 - Cable Sidewall Pressure Limits

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Maximum Sidewall Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>600V control cable</td>
<td></td>
</tr>
<tr>
<td>25kV and 35kV power cable</td>
<td>300 lb/ft (or less, if recommended by manufacturer)</td>
</tr>
<tr>
<td>Interlocked armored cable</td>
<td></td>
</tr>
<tr>
<td>600V power cable</td>
<td>500 lb/ft (or less, if recommended by manufacturer)</td>
</tr>
<tr>
<td>5kV and 15kV power cable</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Per manufacturer’s recommendations</td>
</tr>
</tbody>
</table>

11 Even though Type MV-105 cable is used, the conductor temperature is limited to 90 °C by Type EB and DB duct commonly used in duct banks, and because of the temperature limitations of the terminations.

12 Ampacity tables found in the National Electrical Code do not apply to these systems. See NEC 90.2(B)(5).

13 Cable pulling tension and sidewall pressures may be calculated manually. A variety of guidelines are available for this purpose. However, except for the simplest of cable runs, these calculations can be quite tedious. Computer programs are available (American Polywater Corporation’s “Pull-Planner” and SKM’s “CABLE” being two examples) to perform the calculations.

14 The pulling tension of 0.008 lb/cmil is commonly found in industry literature. Technical papers by Southwire (“Wire and Cable Pulling Tensions”), Kerite (“Pulling Tensions”), and Superior Essex (“Cable Pulling Guidelines”) all cite this value. These publications all reference the Association of Edison Illuminating Companies (AEIC) Publication CG5-90, “Underground Extruded Power Cable Pulling Guide,” May 1990.

15 The 1000 pound tension limit for cables pulled in by woven basket (e.g., a Kellems grip) is also commonly found in industry literature.

16 AEIC Publication CG5-90.
d. For conduit or duct runs of three conductors of equal diameter (or runs with three multi-conductor cables of the same size), calculate the jam ratio using the following formula:17:

Equation 1 - Three-Conductor Jam Ratio

\[
J = 1.05 \times \frac{ID}{OD}
\]

Where:
- \(J \) = Jam Ratio
- \(1.05 \) = A factor used to account for the slight flattening of the conduit at bends
- \(ID \) = Inside diameter of conduit or duct
- \(OD \) = Outside diameter of one conductor or cable

Avoid conduit runs with a jam ratio between 2.5 and 3.0. Jamming can occur at conduit fill levels that would be permissible by the National Electrical Code.

D. Surge arrester coordination

E. Switchgear and Transformers

1. Load analysis and equipment selection
2. Short circuit calculations
3. Foundation design and seismic anchorage calculations, where equipment could endanger path of egress, and within substations. Refer to ASCE 7, Chapter 15 and LANL ESM Chapter 5 for seismic design criteria.

4.2 Drawings

Provide drawings prepared in accordance with LANL Drafting Standards Manual for:

A. Unit Substations

1. One line diagram
2. Three line diagram (These drawings may be left to the equipment vendor to provide as a shop drawing. This may be advantageous, since the three line diagram typically includes terminal details that are vendor-specific.)
3. Plot plan, including topographic contours
4. Grading plan
5. Foundation plans and details
6. Equipment elevations and details
 a. Relay and control device panel layouts
7. Grounding and lightning protection plans and details
8. Fire protection systems, if used.

B. Overhead Lines

1. Plan-and-profile drawings

17 “A Study of Tension and Jamming When Pulling Cable Around Bends,” John M. Fee, Michael J. Fee, American Polywater Corp., March 2002
a. Normally, prepare plan-and-profile drawings using a scale of 1"=200' for the plan and 1"=20' for the profile. \textit{For lines with abrupt ground terrain changes, a scale of 1"=40' in profile may be used.}^{18}

b. Show aboveground and underground utilities in and adjacent to the right-of-way.

c. Show roads, road crossings, pipelines and buildings.

2. Section showing right-of-way clearing.

C. Underground Lines

1. Plan-and-profile drawings

 a. Normally, prepare plan drawings using a scale of 1"=100' for the plan and 1"=10' for the profile. \textit{For lines in especially congested areas, the drawings may be prepared using plan scale of 1"=50' and profile scale of 1"=5' may be used.}

 b. Show end points of cables and ducts.

 c. Indicate allowable pulling tension and sidewall pressure for power cables.

 d. Show potential interferences with any other below-grade installation in or adjacent to the right-of-way (foundations, piping and other utilities).

2. Details: Duct bank, manhole and pad-mount equipment (LANL Std Details \textcolor{red}{here})

 a. Show “exploded” or “unfolded” manhole plans; use LANL ESM Standard Drawings ST-G4010-34 through ST-G4010-37 as templates for manhole drawings.

 b. Provide details of duct bank configurations; use LANL ESM Standard Drawing ST-G4010-32 as a template for ductbank drawings.

 c. Provide details of manhole construction; use LANL ESM Standard Drawings ST-G4010-34 through ST-G4010-37 as templates for manhole drawings.

 d. Provide details of foundations for pad-mount equipment; use LANL ESM Standard Drawing ST-G4010-38 as a template for equipment pad drawings.

 e. Indicate clearances around pad-mount equipment; refer to Figure G4010-1.

 f. Indicate line truck access to manholes and pad-mount equipment; refer to Figure G4020-2.

 g. Detail padmount equipment protection from vehicle contact; use LANL ESM Standard Drawing ST-G4010-39 as a template for equipment protection details.

 h. Detail any required oil spill containment; coordinate requirements with the LANL Water Quality Group.

 i. Detail any potential sources of mutual heating that are within 20 feet from the center of the duct bank.19

18 RUS Bulletin 1724E-200, Chapter 10, Section 10.2.
5.0 OVERHEAD LINES

5.1 General

A. This subsection applies to both primary (medium voltage, 15 kV class) and secondary (low voltage, typically 480 and 208V)\(^{20}\).

B. LANL standard details for overhead distribution lines are based upon crossarm construction. No details have been prepared for other designs, such as vertical or armless construction. Use of alternate designs, while not prohibited, are not encouraged. For consistency in construction techniques, material stocking and maintenance, crossarm construction should be used unless there is an overriding technical requirement for another approach.

C. LANL standard details for overhead distribution and transmission lines utilize static ground wires for lightning protection.

D. Consult with LANL Utilities prior to commencement of design of overhead distribution systems using designs other than standard construction details. Provide complete engineering calculations and detail drawings for review and approval.

5.2 Clearances, General Requirements

A. Apply the requirements of NESC Section 23.

B. Refer to RUS Bulletins 1724E-154 and 1724E-200 for an in-depth treatment of clearance and span rules. The NESC is the ruling document for LANL systems. Guidance provided in the RUS bulletins regarding clearances should be considered as explanatory material.

C. Refer to the Wildlife Protection article in this Section for special requirements in bald eagle habitat areas\(^{21}\) (e.g., TA-33, TA-70, and TA-71).

5.3 Clearance above Ground

A. Apply the requirements of NESC 232 and Table 232-1.

B. For circuits exceeding 22 kV phase-to-ground (38.1 kV phase-to-phase), apply the adjustment factors given in NESC Rule 232C1a for voltage and Rule 232C1b for LANL’s elevation of 7,500 feet.

5.4 Clearance between Wires, Conductors and Cables Carried on Different Supporting Structures

A. Apply the requirements of NESC 233.

B. For circuits exceeding 22 kV phase-to-ground (38.1 kV phase-to-phase), apply the adjustment factors given in NESC Rule 233C2a for voltage and Rule 233C2b for LANL’s elevation of 7,500 feet.

5.5 Clearance of Wire, Conductors, Cables and Energized Equipment from Other Structures

A. Apply the requirements of NESC 234.

B. For circuits exceeding 22 kV phase-to-ground (38.1 kV phase-to-phase), apply the adjustment factors given in NESC Rule 234G1 for voltage and Rule 234G2 for LANL’s elevation of 7,500 feet.

\(^{19}\) Excavation and repair work has shown that steam lines that are within 10 feet of electrical ductbanks have a significant effect on the ampacity of the conductors. Ductbanks can be closer than 20 feet to sources of mutual heating, but if they are, this should be known and approved by Utilities.

\(^{20}\) NESC Rule 201

\(^{21}\) Refer to Migratory Bird Best Management Practices Source Document for Los Alamos National Laboratory
5.6 Grades of Construction

A. Apply the minimum construction grade requirements of NESC Table 241-1, except that the minimum allowable construction grade for LANL systems is Grade C\(^{22}\).

5.7 Loading

A. NESC Loading

1. Use the NESC “Medium” loading zone\(^{23}\) for combined wind and ice loading calculations required by NESC Rule 250B.

B. Combined Ice and Wind Loading\(^{24}\)

1. Radial thickness of ice: 0.25 in
2. Horizontal wind pressure: 4 lb/ft\(^2\)
3. Temperature: +15ºF

C. Extreme Wind Loading

1. Applicability:
 a. In any case where a structure and its supported facilities are 60 feet or more above the ground or water surface, extreme wind loading is to be applied to both the structure and its supported facilities\(^{25}\).
 b. For metal, prestressed, or reinforced concrete structures of any height, extreme wind loading is to be applied to the structure standing alone\(^{26}\).
 c. For wood structures of any height, extreme wind loading is to be applied to the structure standing alone\(^{27}\).

2. Ultimate design wind speed. The ultimate design wind speed, \(V_{ult}\), for the determination of the wind loads for the design of buildings and structures shall be per ESM Chapter 5 Section II. At time of writing, this was as follows:
 a. 105 mph for Risk Category I
 b. 115 mph for Risk Category II
 c. 120 mph for Risk Category III and IV.

3. Horizontal wind pressure on surfaces is to be calculated in accordance with NESC 250.C, with air density adjusted for 7000 feet elevation\(^{28}\).

4. Temperature: +60 ºF\(^{29}\)

\(^{22}\) Rules concerning grades of construction are covered in Section 24 of the NESC. A possibility of failure of a structure that supports overhead lines exists at any location. The degree of hazard that would exist, should a structure fail and a conductor fall, is related to the voltage of the conductor, the surface onto which the conductor might fall and the number of people who would be at risk of injury as the result of the fall. Increasing the strength of the line can reduce the probability of the conductor falling. The NESC recognizes three different degrees of hazard, together with three different grades of construction to alleviate the hazard. These grades are identified as B, C, and N. Grade N construction has essentially no strength requirements. For this reason, LANL overhead systems must be designed to meet or exceed the requirements of NESC Grade C construction. Grade N construction is not permitted.

\(^{23}\) NESC Figure 250-1

\(^{24}\) NESC Rule 250B

\(^{25}\) NESC Rule 250C

\(^{26}\) NESC Rule 261A1c

\(^{27}\) NESC Rule 261A2f

\(^{28}\) The elevation of 7000 feet is consistent with DOE-STD-1020-2002 Table 3-2.

\(^{29}\) NESC Table 250-1
D. Seismic
 1. No special consideration need be given to seismic loading of overhead distribution or transmission line structures.\(^{30}\)
 2. Design foundations and equipment anchoring in accordance with applicable seismic requirements.\(^{31}\)

5.8 Slack Spans
A. LANL's standard practice is to design distribution lines to be installed under tension with guyed deadend structures. From time to time, space restrictions, or other constraints may make the use of slack spans necessary. When slack spans are considered during design, submit details of the proposed installation to LANL Utilities for review and approval.
B. Provide calculations to verify the adequacy of conductor spacing based upon sag of the slack span. Refer to NESC Rule 235B1b and Table 235-3.

5.9 Strength Requirements
A. Follow the strength considerations for overhead lines of NESC Section 26.
B. Follow guidelines for stress calculations given in the following RUS Bulletins:
 1. Distribution Poles: RUS Bulletin 1724E-150
 2. Distribution Crossarms: RUS Bulletin 1724E-151

5.10 Pole Embedment Depth Requirements
A. Provide pole embedment as indicated in Table G4010-2.
Table G4010-2 - Pole Embedment Depth Requirements (RUS Bulletin 1728F-803)

<table>
<thead>
<tr>
<th>Pole Length (ft)</th>
<th>Embedment Depth In Soil (ft)</th>
<th>Pole Top Height In Soil (ft)</th>
<th>Embedment Depth in Solid Rock (ft)</th>
<th>Pole Top Height In Solid Rock (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5.5</td>
<td>24.5</td>
<td>3.5</td>
<td>26.5</td>
</tr>
<tr>
<td>35</td>
<td>6.0</td>
<td>29.0</td>
<td>4.0</td>
<td>31.0</td>
</tr>
<tr>
<td>40</td>
<td>6.0</td>
<td>34.0</td>
<td>4.0</td>
<td>36.0</td>
</tr>
<tr>
<td>45</td>
<td>6.5</td>
<td>38.5</td>
<td>4.5</td>
<td>40.5</td>
</tr>
<tr>
<td>50</td>
<td>7.0</td>
<td>43.0</td>
<td>4.5</td>
<td>45.5</td>
</tr>
<tr>
<td>55</td>
<td>7.5</td>
<td>47.5</td>
<td>5.0</td>
<td>50.0</td>
</tr>
<tr>
<td>60</td>
<td>8.0</td>
<td>52.0</td>
<td>5.0</td>
<td>55.0</td>
</tr>
</tbody>
</table>

Notes:
1. “Embedment depth in soil” depths must apply:
 a. Where the poles are to be set in soil,
 b. Where there is a layer of soil more than 2 feet deep over solid rock, or
 c. Where the hole in solid rock is not substantially vertical or the diameter of the hole at the
 surface of the rock exceeds approximately twice the diameter of the pole at the same level.
2. “Embedment depth in solid rock” depths may apply:
 a. Where the poles are to be set in solid rock and where the hole is substantially vertical,
 approximately uniform in diameter, and large enough to permit the use of tamping bars the
 full depth of the hole. When there is a layer of soil 2 feet or less deep over solid rock, the
 depth of the hole must be the depth of the soil in addition to the “Embedment Depth in Solid
 Rock” value.
3. On sloping ground, the depth of the hole must be measured from the low side of the hole.

5.11 Lightning Protection
A. Apply IEEE Std 1410 in the design and specification of overhead distribution lines.
B. Design distribution structures to obtain a critical impulse flashover voltage (CFO)\(^{32}\) of not
 less than 250 kV to 300 kV\(^{33}\) at an altitude of 7,500 ft.

5.12 Overhead Transformer Secondary Conductors (480V and Below) Including Service Drops
A. Use 600 V insulated quadruplex (triplex for single-phase circuits) all-aluminum conductor
 (AAC) with aluminum conductor, steel-reinforced (ACSR) messenger wire.
B. Determine conductor ampacity based upon\(^{34}\):
 1. 90 °C conductors and 75 °C terminations
 2. 40 °C ambient temperature
 3. 2 ft/sec wind in sun
C. On primary structures with secondary underbuilds, design spacing between primary and
 secondary conductors in accordance with NESC Rule 235. Verify that conductor sag
 profiles maintain this spacing at all spans.
D. Design overhead service runs, feeders and branch circuits to provide voltage drop
 performance in accordance with LANL ESM Chapter 7, Section D5010. Provide
 calculations to verify conformance with those requirements.

\(^{32}\) Refer to IEEE Std 1410 §3.3.
\(^{33}\) Refer to IEEE Std 1410 §7.2.
\(^{34}\) Cable ampacity conditions from Southwire Quadruplex Service Drop Cable product sheet. Assumes
 polyethylene insulation. Using conductors with 90 °C insulation will satisfy the 40 °C ambient condition.
E. Sag-and-tension calculations for short runs of transformer secondary conductors can be simplified by using the parabolic equation for cable sag35:

Equation 2 - Parabolic Sag Equation

\[
S = \frac{WL^2}{8T}
\]

Where:
- \(S\) = conductor sag, in feet
- \(W\) = weight of cable assembly, messenger any ice loading, pounds per foot
- \(L\) = length of span, in feet
- \(T\) = conductor tension, pounds

Example: Assume a 4/0 AWG quadruplex service drop consisting of three 4/0 AWG insulated conductors and a bare 4/0 AWG 6/1 stranded ACSR messenger. It weighs 1.063 pounds per foot. The span length is 175 feet. Tension at the building anchor at one end of the span cannot exceed 1000 pounds. What is the minimum cable sag?

Equation 3 - Example Sag Calculation

\[
S = \frac{(1.063)(175)^2}{(8)(1000)} = 4.07 \text{ feet}
\]

F. For overhead transformer secondary conductors that terminate at an anchor installed on a building or at a weatherhead mast designed and installed by other parties, verify the capacity of the anchor point or mast. Request that anchor points on buildings or masts be designed and installed to withstand cable tension of 1500 pounds. Design secondary conductors that terminate at a building-installed anchor point or weatherhead mast to maintain tensions below the design strength of the anchor point or mast.

6.0 **Medium Voltage Cable**

A. Shielded 15 kV Power Cable

1. Comply with NESC and ICEA S-93-639/NEMA WC74 requirements for medium-voltage power cable and its installation. Use shielded power cable for 15 kV systems in raceways, duct banks, manholes, and vaults. Use shielded power cable for interconnections within switchgear and equipment where sufficient space exists for bending and terminating shielded cables.

2. Use NRTL-listed Type MV105 133 percent insulated power cable with copper conductors, 4/0 AWG minimum,36 and selected so conductor temperature will not exceed 90 degrees C at 100 percent load factor.37

3. Terminate shielded 15 kV cables using cable terminations that meet Class 1A requirements of IEEE Std 48, *Test Procedures and Requirements for High Voltage Alternating Cable Terminations.*

36 4/0 AWG medium-voltage cable with 5 mil tape shield is the minimum size that can carry the expected 15% of 14,000 amp ground fault that will appear on the cable shield for the 0.2 seconds before the SM-149 substation breaker trips on ground fault. Source *IEEE Transactions on Industry*, Vol. IA-22, No. 6, November/December 1986 paper entitled "Are Cable Shields Being Damaged during Ground Faults?" by Paul S. Hamer and Barry M. Wood.

37 Operating temperature is limited to 90C because concrete-encased PVC conduits and plastic underground power ducts are listed for conductors rated 90C or less. Refer to UL product category codes DZYR and EAZX. The terminations are also limited to 90 DegC.
4. Refer to LANL Master Specification Section 26 0513 – Medium Voltage Cables, for material and installation requirements.

B. Non-shielded 15 kV Power Cable

1. Specify non-shielded 15 kV power cables for jumpers used for raptor (bird of prey) protection as shown in the standard detail drawings.

2. Specify non-shielded 15kV power cables within switchgear or transformer enclosures where it is not feasible to install shielded cables due to inadequate space for bending or terminating shielded cables. Obtain approval from the LANL ESM Electrical POC for each installation of non-shielded 15 kV cable (POC will consult with Utilities).

3. Specify non-shielded 15 kV transformer cable with 220 mils of EPR insulation, chlorosulfonated polyethylene (Hypalon) jacket, and minimum 2 AWG copper conductor.

4. Support non-shielded cables in switchgear or transformer enclosures by full voltage rated, flame-resistant, non-tracking insulating materials of sufficient strength, size, and placement to maintain adequate clearances. The following are guideline minimum clearances:

<table>
<thead>
<tr>
<th></th>
<th>air separation (in.)</th>
<th>creepage distance (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>between non-shielded cables</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>between non-shielded cables and grounded parts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 UNDERGROUND CONSTRUCTION

7.1 Duct Banks

A. For new power duct bank installations, provide 30 percent spare ducts (rounding all fractions up to the next whole number), but not less than one spare duct.

B. For new and augmented electrical utility “infrastructure” ductbanks (e.g., ductbank systems interconnecting electric manholes, utility substations, and switchgear), provide not less than one 6 inch duct dedicated to electrical power utility fiber optic communications. Provide eight 1” corrugated “innerducts,” each with a pull cord, in the 6” duct; extend the innerducts 18 inches into each manhole.

C. Minimum duct size:

1. Low-voltage (0-1000 V): 2 inches
2. Medium voltage (1001 V – 15 kV) Radial feeds to transformers / padmount switches: 4 inches
3. Other Medium voltage: coordinate with ES-UI.

D. For projects involving addition of cable(s) to an existing duct bank, if the installation will fill the only remaining open duct(s), provide a new duct run along the same route. Provide a minimum of two new spare ducts. A fault in a duct bank frequently results in the faulted cable adhering to the walls of the duct, very difficult or impossible to remove.

38 Design/installation requirements for 15 kV unshielded cable is corrective action #3 to Occurrence Report LANL-1994-0013.

39 Refer to IEEE C37.20 for additional information about sheet, molded, or cast insulating materials.
E. Ampacity Calculation: Use the NEC® Annex B, the Neher-McGrath formula40, IEEE Std 835 Standard Power Cable Ampacity Tables, or approved (per ESM Ch 1 Section Z10) software in conjunction with the following factors to calculate the ampacity of conductors in parallel underground ducts having less than 5 ft separation between centerlines of the closest ducts or 4 ft separation between the extremities of the concrete envelopes41. Provide final copy of ampacity calculations to ES-UI. Factors to use in the calculations:

1. Concrete thermal resistivity (Rho) of 55 °C-cm/watt
2. Native soil thermal resistivity (Rho) of 225 °C-cm/watt unless otherwise measured in accordance with IEEE Std 442 Guide for Soil Thermal Resistivity Measurements.42 It may be cost-effective to design ductbank systems that use a select soil backfill to provide a lower Rho; review any such approach with the ESM Chapter 7 POC.
3. Ambient earth temperature of 20°C outside the perimeter of a heated building43
4. Ambient earth temperature of 30°C within the perimeter of a heated building44

F. Design duct banks to provide a minimum cover of 24 inches from the ground surface to the top of the concrete.

G. Design duct banks and manhole systems to slope a minimum of 4 inches per 100 feet to a suitable sump area in a manhole.

H. Specify red-dyed concrete for medium-voltage duct bank embedment.

I. Perform calculations to determine pulling tensions and sidewall pressures for all duct or conduit runs of medium voltage power cable.

J. Refer to LANL Master Specification Section 33 7119 – Electrical Underground Ducts and Manholes for ductbank material and installation requirements.

7.2 Manholes

A. Except as noted, design manholes in accordance with NESC Rule 323.

1. Dimensions as given in this Section. Interior height to be 7 feet, minimum.

B. Size manholes in accordance with Tables G4010-3 and G-4010-4.

40 Refer to NEC® Section 310.15(C) and associated discussion in the NEC Handbook.
41 Refer to NEC® Appendix B and associated discussion in the NEC Handbook.
42 Soil at LANL is typically dry welded tuff (volcanic ash) with a thermal resistivity of 250 to 500 °C-cm/watt; refer to Table 2.3.1 in The Geological Society of America special paper 408: “Tuffs – Their Properties, Uses, Hydrology, and Resources.”
43 Soil not covered by a building will be cooled by nighttime radiation and exposed to the low average air temperature at LANL
44 Soil covered by a heated building will be effectively insulated by the warm building resulting in a higher ambient soil temperature.
Table G4010-3: 15 kV Power Manhole Sizes – No Switchgear on Manhole

<table>
<thead>
<tr>
<th>Largest Cable</th>
<th>Straight Pull</th>
<th>Angle Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Ducts</td>
<td>3 Ducts</td>
</tr>
<tr>
<td>4/0 AWG</td>
<td>8' x 7'</td>
<td>8' x 7'</td>
</tr>
<tr>
<td>250 kcmil</td>
<td>8' x 7'</td>
<td>8' x 7'</td>
</tr>
<tr>
<td>500 kcmil</td>
<td>8' x 7'</td>
<td>8' x 7'</td>
</tr>
<tr>
<td>750 kcmil</td>
<td>8' x 7'</td>
<td>8' x 7'</td>
</tr>
<tr>
<td>1000 kcmil</td>
<td>12'-6" x 6'</td>
<td>10' x 10'</td>
</tr>
</tbody>
</table>

Number of ducts is the maximum number entering any one face of the manhole.

Table G4010-4: 15 kV Power Manhole Sizes – One 15kV Pad-Mount Switch on Manhole

<table>
<thead>
<tr>
<th>Largest Cable</th>
<th>Straight Pull</th>
<th>Angle Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Ducts</td>
<td>3 Ducts</td>
</tr>
<tr>
<td>4/0 AWG</td>
<td>12'-6" x 6'</td>
<td>12'-6" x 6'</td>
</tr>
<tr>
<td>250 kcmil</td>
<td>12'-6" x 6'</td>
<td>12'-6" x 6'</td>
</tr>
<tr>
<td>500 kcmil</td>
<td>12'-6" x 6'</td>
<td>12'-6" x 6'</td>
</tr>
<tr>
<td>750 kcmil</td>
<td>12'-6" x 6'</td>
<td>13' x 8'</td>
</tr>
<tr>
<td>1000 kcmil</td>
<td>12'-6" x 6'</td>
<td>13' x 8'</td>
</tr>
</tbody>
</table>

Number of ducts is the maximum number entering any one face of the manhole.

C. For manholes with two 15 kV pad-mount switches mounted on manhole, the minimum size is 18'-6"x6'.

D. Refer to LANL Master Specification Section 33 7119 – Electrical Underground Ducts and Manholes for manhole material and installation requirements.

E. Design manholes so that cable entry and exit is in the same horizontal plane, minimum of 1 foot above floor to bottom of lowest conduit.

F. Align ducts for straight through pulls in manholes. Offset ducts create pulling problems.

G. Design a means for drainage in the bottom of the manhole. Means of drainage include a rock-filled sump under the floor of the manhole or installation of a sump pump. The sump pump has the disadvantage that it requires a source of low-voltage power for operation.

H. Where cables are spliced within manholes, bond cable shields to the 4/0 grounding conductor embedded in the duct bank.

I. Provide manholes spaced every 500 feet along duct runs. Alternate spacing may be considered based upon the results of pulling tension calculations. Base pulling calculations on circuit runs of three 1000 kcmil conductors.

J. It is not always necessary for conduits to pass through manholes. Where cable-pulling calculations permit, bypass manholes with large radius bends to avoid double pulls.

K. Mark manhole cover with manhole number.

7.3 Rodent-Proofing

A. Purchase and install outdoor medium-voltage equipment to be rodent proof with maximum 1/4-inch unprotected openings in enclosures.

B. When penetrating an exterior wall, roof, or floor for the passage of conduits, wireways, bus ducts, etc., seal opening and provide a metal collar securely fastened to the structure.
C. Seal all cable entries and plug unused conduits entering indoor or outdoor equipment from outdoors with material that rodents will not be able to gnaw through, squeeze through, or push aside. Examples of such material include:
 1. 1/4-inch mesh welded, galvanized or copper mesh hardware cloth
 2. 1/4-inch stainless steel hardware cloth

7.4 Underground Distribution Transformer Secondary Conductors (480V and Below) Including Service Drops
A. Use 600V insulated Type XHHW-2 insulated copper conductors.
B. Design underground service runs, feeders and branch circuits to provide voltage drop performance in accordance with LANL ESM Chapter 7, Section D5010 (2.10, Conductors). Provide calculations to verify conformance with those requirements.
C. Refer to “Ampacity Calculation” paragraph (7.1.E) above for parallel conductors.

8.0 PADMOUNT SWITCHES

8.1 Description
A. For purposes of this subsection, “padmount switches” are understood to consist of a single self-supporting enclosure containing interrupter switches. A padmount switch may include power fuses and accessory compartments.
B. Padmount switches are restricted to outdoor use.
C. Padmount switches shall be manufactured in accordance with IEEE C37.74.

8.2 Application
A. Padmount switches are typically used for sectionalizing applications in the LANL power distribution system. Within the limitations of their current-carrying capability, interrupting duty and available configurations, padmount switches typically offer the lowest-cost switching solution.
B. For application of padmount switchgear, consult with LANL Utilities.
C. Because of the relatively limited short-circuit capacity of padmount switchgear, available fault current at the proposed switch location must be carefully considered.

8.3 Installation
A. Specify padmount switches atop or immediately adjacent to manholes.
B. Route cables to padmount switches through manholes.
C. Design foundation for pad-mounted switch; refer to LANL Master Specification Section 33 7711 – Pad-Mounted Switch Rough-in for material and installation requirements.
 1. LANL-UI typically uses a pre-fabricated foundation for ease of installation
 2. Where protection bollards are appropriate, refer to Standard Detail ST-G4010-39, Pad-Mounted Equipment Protection and Barrier Pipe Details.

45 These are the typical green boxes manufactured by Federal Pacific, S&C Electric, Cooper Power Systems and others. Their cabinets are nearly cubical, measuring 5 feet on each side.
46 Refer to ASCE 7, Chapter 15 and LANL ESM Chapter 5 for seismic design criteria.
3. If required, include seismic anchorage design (see Design Documentation subsection).47

8.4 Clearances

A. Design installations of padmount switches to permit maintenance access. Design the installation of padmount switches to ensure 10 feet of clear working space in front of the switch enclosure doors for the full width of the enclosure.48 In areas where vehicle parking may be possible, bollards, curbs or other structures should be installed to keep vehicles out of the working space. The sides of switches without doors or auxiliary compartments containing electrical control or instrumentation devices do not need working space greater than 30 inches for personnel access. For switches with side-mounted accessories such as fuse storage compartments or crank-type switch operators, this access space is to be measured from the outer face of the accessory or the end of the crank handle. Auxiliary compartments with electrical control or instrumentation devices must be provided with working space in conformance with NESC Rule 125.

9.0 **Metal-Enclosed Interrupter Switchgear**

9.1 Description

A. For purposes of this Subsection, “metal-enclosed interrupter switchgear” is understood to be equipment consisting of interrupter switches housed in individual steel compartments.49 Switching devices are fixed (not drawout). Buses are typically exposed when the compartment door is open. The switchgear may include fuses, sensing and metering devices and control equipment, but not power circuit breakers.

B. Metal-enclosed interrupter switchgear is available with enclosures suitable for indoor or outdoor installation.

C. Metal-enclosed interrupter switchgear shall be manufactured in accordance with IEEE C37.20.3.

9.2 Application

A. Metal-enclosed interrupter switchgear differs from padmount switches in its higher continuous current and interrupting rating, and wider availability of custom features. Metal-enclosed interrupter switchgear is commonly used as the primary disconnecting means for unit substations.

B. For application of metal-enclosed interrupter switchgear, consult with the LANL Utilities. Consultation with the equipment vendors is also recommended.

C. Manufacturers’ ratings do not take into consideration the effect of solar radiation on metal-enclosed interrupter switchgear installed outdoors. Use IEEE Standard C37.24 to calculate the derating of the continuous current rating of switchgear exposed to the sun.

D. Design foundation and seismic anchorage for metal-enclosed interrupter switchgear where switchgear is in danger of encroaching on a path of egress.50

47 Refer to ASCE 7 Chapter 15 and LANL ESM Chapter 5 for seismic design criteria.

48 Ten feet of clearance in front of padmount switches is a long-standing LANL practice. It presumes the use of hot-sticks for operating switches and replacing fuses in the switch compartments.

49 These are the typical tall medium-voltage switches manufactured by Federal Pacific, S&C Electric, Cutler-Hammer, and numerous others. For 15kV-class equipment, the cabinets are approximately 4 feet wide, 7–10 feet tall, and 4 feet deep.

50 Refer to ASCE 7 Chapter 15 and LANL ESM Chapter 5 for seismic design criteria.
10.0 METAL-CLAD SWITCHGEAR

10.1 Description
A. For purposes of this Section, “metal-clad switchgear” is understood to be equipment consisting of individual steel compartments with drawout switching devices. Switching devices may be load-break interrupter switches or power circuit breakers. The switchgear may include fuses, sensing and metering devices and control equipment.
B. Metal-clad switchgear is available with enclosures suitable for indoor or outdoor installation.
C. Metal-clad switchgear shall be manufactured in accordance with IEEE C37.20.2.

10.2 Equipment
A. Specify General Electric Power/VAC vacuum metalclad circuit breaker elements for use on 15kV-class systems unless LANL Utilities and the LANL ESM Electrical POC has approved the use of other equipment. The limitation extends only to the interrupter devices (the vacuum bottles) and the removable circuit breaker mechanism (the breaker “truck”). The switchgear control systems, buswork and enclosures may be assembled by a qualified fabricator other than General Electric.

10.3 Application
A. Metal-clad offers the most flexible means of control and protection for power systems. Sophisticated protective relay schemes are readily applied to metal-clad switchgear. Of the three available types of switchgear, metal-clad is the most expensive.
B. For application of metal-clad switchgear, consult with the LANL Utilities. Consultation with the equipment vendors is also recommended.
C. Specify outdoor installations of metal-clad switchgear with walk-in aisle-type enclosures.
D. Provide ventilation (and air conditioning if required) as necessary to ensure that interior temperatures do not exceed 95 °F.
E. Manufacturers’ continuous current ratings do not take into consideration the effect of solar radiation on metal-clad switchgear installed outdoors. Use IEEE Standard C37.24 to calculate the derating of the continuous current rating of switchgear exposed to the sun. Use a solar heat gain of 110 W/sq ft.
F. Design foundation and seismic anchorage for metal-clad switchgear where switchgear is in danger of encroaching on a path of egress.

11.0 MEDIUM-VOLTAGE TRANSFORMERS

11.1 General
A. This Subsection pertains to transformers with medium-voltage (15 kV class) primary windings. ES-UI must review and approve any distribution transformer shop drawings and/or submittals prior to procurement.
B. Contact ES-UI for utility transformer specifications

51 The selection of General Electrical circuit breaker elements has been made for reasons of interchangeability of equipment from one installation to another, commonality of repair parts and personnel training and safety.
52 LANL Engineering Standards Manual, Mech Chapter 6, Section D10–30 GEN (10.0.E, General Mechanical Requirements)
C. Specify transformers with primary basic impulse level (BIL) rating of 95 kV at an elevation of 7500 feet (110 kV at sea level) and a secondary BIL of 30 kV. De-rate all components and clearances affected by elevation for an elevation of 7500 feet.

D. Specify medium-voltage distribution transformers with efficiencies not less than that required for their kVA rating in 10 CFR 431 Subpart K – Distribution Transformers\(^{53}\).

E. Contact ES-Ul for Utility Distribution Transformer Specification

F. **Guidance:** Distribution transformers that are 500 kVA or larger should utilize a technology such as internal Vacuum Fault Interrupter (VPI) in order to mitigate incident energy on the secondary side.

11.2 Transformer Selection

A. Outdoors, use non-PCB liquid-insulated transformers\(^{54}\)

1. **Pad-mounted transformers**
 a. Dielectric/coolant fluid: Bio-based, non-toxic, biodegradable, less-flammable, natural ester fluid\(^{55}\)
 b. Copper windings
 c. 65 °C average winding temperature rise over a 30 °C average, 40 °C maximum ambient temperature.
 d. IEEE C57.12.22 live-front radial-feed construction
 e. 15 kV distribution class metal-oxide surge arresters\(^{56}\)
 f. Tap changer for de-energized operation
 g. Oil-immersed load-break primary switch
 h. Current-limiting fuses in dry-well canisters.

2. **Pole-type distribution transformers**
 a. Mineral oil insulated transformers
 b. Single-phase
 c. Aluminum windings
 d. 65 °C average winding temperature rise over a 30 °C average, 40 °C maximum ambient temperature
 e. Completely self-protected (CSP) type for single-phase installation, non-CSP for three-phase banks.
 f. 13.2 kV primary voltage, 125 kV BIL
 g. Universal taps at 14.4 kV 13.8 kV, 12.87 kV and 12.54 kV

\(^{53}\) 10 CFR 431 Subpart K has an effective date of January 1, 2010. It mandates the minimum efficiency standards for liquid-immersed and dry-type medium-voltage distribution transformers.

\(^{54}\) Where pad-mounted liquid-insulated distribution transformers are not practical, a specific vacuum dry-type cast coil distribution transformer may be used with the prior approval of ES-Ul and LANL ESM chapter 7 point of contact. Contact ES-Ul for specification details.

\(^{55}\) Bio-based, natural ester, less-flammable transformer dielectric/coolant fluid (e.g., Cooper Envirotemp FR3) provides several advantages over standard mineral that overcome its 25 to 30 percent cost premium: FM approved as a "less flammable" fluid so transformer can be installed closer to structure; EPA classified as "ultimately biodegradable" so spill containment is not required; absorbs moisture from paper insulation thus extending transformer life 5 to 8 times and increasing overload capability by about 10 percent.

\(^{56}\) In some cases, surge arrestors are installed at the riser, and are not needed at the transformer.
3. Unit substations
 a. Dielectric/coolant fluid: Bio-based, non-toxic, biodegradable, natural ester, less-flammable liquid-insulated transformers.55
 b. Copper windings
 c. 55/65 °C average winding temperature rise over a 30 °C average, 40 °C maximum ambient temperature.
 d. 15 kV intermediate class metal-oxide surge arresters
 e. Tap changer for de-energized operation

B. Indoor installations
 1. Use vacuum cast-coil, dry-type transformer.
 a. Copper windings
 b. 100 °C average winding temperature rise over a 30 °C average, 40 °C maximum ambient temperature.
 c. 15 kV intermediate class metal-oxide surge arresters61
 d. Four 2.5% full-capacity taps.

11.3 Transformer Capacity

A. Base transformer capacity on load calculations for facilities calculated in accordance with the National Electrical Code, this Chapter, and loading guidance in the following IEEE Standards as applicable:
 1. IEEE C57.91 – Guide for Loading Mineral-Oil-Immersed Transformers (ANSI)
 2. IEEE C57.96 - Guide for Loading Dry-Type Distribution and Power Transformers

B. Use the following loading factors to determine transformer capacity:
 1. Average 24-hour ambient temperature:
 a. 20.9 °C57 for outdoor installations at elevation of 7000 ft58 or higher
 b. 22.3 °C59 for outdoor installations at elevation of less than 7000 ft.
 2. Elevation: Actual site elevation determined from GPS or USGS topographic map.
 3. Transformers serving facilities having a significant daily load cycle may be operated with the peak load above the transformer nameplate rating so long as normal transformer life expectancy is maintained; refer to IEEE transformer loading guides.

C. For single-ended services the calculated load (using NEC) plus future load growth shall not exceed the calculated transformer self-cooled peak loading capability.

D. For double-ended services, the calculated closed-tie load (using NEC) plus future load growth shall not exceed the calculated forced-air cooled peak loading capability of either transformer.

57 Refer to Los Alamos Climatological Survey at http://wxmach.lanl.gov/climate/LANormals.html; Los Alamos highest 24-hour average temperature is 69.6 °F (20.88 °C) on June 28.
58 7000 ft elevation is arbitrarily chosen as the demarcation between the Los Alamos and White Rock climates.
59 Refer to Los Alamos Climatological Survey at http://wxmach.lanl.gov/climate/WRNormals.html; White Rock highest 24-hour average temperature is 72.1 °F (22.27 °C) on July 6.
11.4 Transformer Location

A. Locate outdoor liquid-insulated transformers with respect to structures and equipment according to the National Electrical Code and FM Global Property Loss Prevention Data Sheet 5-4; also refer to Tables G4010-5 and G4010-6 and Figure G4010-1 herein.

B. Locate transformer to permit access for maintenance and for transformer replacement.
 1. Provide space maintenance access on all sides of each transformer; refer to Figure G4010-1.
 2. Provide all-weather access path so a utility digger derrick truck can drive up next to at least one side of each transformer; refer to Figure G4010-2.

C. Locate transformer so terrain other structures will protect it from accidental contact by vehicles, or provide suitable protective barriers; refer to Standard Drawing ST-G4010-39.

D. Locate transformer so drainage is away from the building or design a containment or diverter for the liquid.

E. Locate transformer so that, in case of a seismic event, it is in no danger of encroaching on the path of egress.

F. Locate outdoor transformers where no piping or conduit, except that connected to the transformer, will be beneath the transformer pad.

G. Design foundation or pad for transformer; refer to Drawing ST-G4010-38 for typical transformer pad detail; refer to LANL Master Specification Section 33 7311 – Pad-Mounted Transformer Rough-in for material and installation requirements.

H. Refer to the Environmental Protection article of this Section for oil pollution prevention requirements.
TRANSFORMER PAD CLEARANCES
SCALE: NONE

KEYED NOTES:

1. PAD OR OIL CONTAINMENT STRUCTURE FOR TRANSFORMER.
2. ROOF OVERHANG OR BUILDING WALL WITH CONSTRUCTION AS INDICATED IN TABLE G4010–5.
3. WALL WITH NO DOORS, WINDOWS, VENTILATION LOUVERS, OR SIMILAR OPENINGS LESS THAN THE VERTICAL CLEARANCE ABOVE TOP OF TRANSFORMER INDICATED IN TABLE G4010–5.
4. DOOR, WINDOW, ARCHITECTURAL GLASS, VENTILATION LOUVER, OR SIMILAR OPENING.
5. MINIMUM SEPARATION BETWEEN TRANSFORMER AND BUILDING; REFER TO TABLE G4010–5.
6. MINIMUM SEPARATION BETWEEN TRANSFORMER AND COMBUSTIBLE CONSTRUCTION; REFER TO TABLE G4010–5.
7. PROVIDE CONCRETE APRON, MINIMUM 4 INCHES REINFORCED CONCRETE; MAY BE INCORPORATED WITH SIDEWALK.
8. MINIMUM CLEARANCE TO EQUIPMENT, FENCE, OR SIMILAR CONSTRUCTION THAT PROJECTS ABOVE TOP OF TRANSFORMER PAD. LANDSCAPING MUST NOT RESTRICT ACCESS OR VENTILATION.
9. MINIMUM CLEARANCE TO CURBING, SIDEWALKS, OR BARRIER PIPES.
10. PROVIDE AND MAINTAIN AN 18 FT WIDE SPACE ON ONE SIDE OF PAD TO ALLOW A UTILITY LINE TRUCK TO DRIVE UP NEXT TO THE PAD FOR INSTALLATION AND MAINTENANCE OF THE TRANSFORMER. LANDSCAPING SHALL NOT RESTRICT THIS ACCESS.

Figure G4010-1 Transformer Clearances
Table G4010-5 Separation Distance between Transformer and Structure60

<table>
<thead>
<tr>
<th>Liquid</th>
<th>FM Approved Transformer or Equivalent</th>
<th>Liquid Volume (gallons)</th>
<th>Horizontal Distance (feet)</th>
<th>Vertical Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two Hour Fire Resistant Construction</td>
<td>Non-combustible Construction</td>
</tr>
<tr>
<td>Less Flammable (FM Approved Fluid)</td>
<td>Yes</td>
<td>N/A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>≤10,000</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10,000</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Mineral Oil or Unapproved Fluid</td>
<td>N/A</td>
<td><500</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500-5000</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5000</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Table G4010-6 Separation between Transformer and Equipment61

<table>
<thead>
<tr>
<th>Liquid</th>
<th>FM Approved Transformer or Equivalent</th>
<th>Liquid Volume (gallons)</th>
<th>Horizontal Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Flammable (FM Approved Fluid)</td>
<td>Yes</td>
<td>N/A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>≤10,000</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10,000</td>
<td>25</td>
</tr>
<tr>
<td>Mineral Oil or Unapproved Fluid</td>
<td>N/A</td>
<td><500</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500-5000</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5000</td>
<td>50</td>
</tr>
</tbody>
</table>

11.5 Overcurrent Protection
A. Install primary overcurrent devices to provide through-fault protection of transformer in accordance with IEEE Standard 242 \textit{(Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems)}.

11.6 Pad Mounted Transformer Secondary Connections
A. Limit the number and size of phase and neutral conductors to that which can be accommodated by the transformer secondary terminals. Refer to IEEE C57.12.22.

12.0 UNIT SUBSTATIONS
12.1 Description
A. For purposes of this Subsection, “unit substations” are understood to mean assemblies of metal-enclosed, unitized electrical power substation equipment consisting of a medium-voltage interrupter switch section, a transformer section, and a secondary-voltage distribution section. The transformer associated with the substation may be either liquid-filled or dry-type.

60 Refer to FM Global Loss Prevention Data Sheet 5-4 Transformers, Table 2a. Available at: http://www.fmglobal.com/ (registration required)

61 Refer to FM Global Loss Prevention Data Sheet 5-4 Transformers, Table 2b.
B. Unit substations are typically designed to receive power at voltages up to 34.5 kV, transform it to voltages of 5000 volts or less, and control its distribution to load areas.

C. Underwriters Laboratory certifies unit substations with low-voltage ratings of 600V, maximum and transformer ratings as high as 3000 kVA. Ratings to 10MVA are available.

12.2 Equipment

A. Unit substations may be configured in the following arrangements (in increasing order of reliability):

1. Simple radial primary feed. This is the simplest and least expensive arrangement. It consists of a single medium-voltage feeder, one transformer, and one low-voltage bus.

2. Primary selective. This arrangement also has one transformer and one low-voltage bus. It differs from the radial primary feed in that the primary switches can select one of two incoming feeders.

3. Loop feed primary. This is similar to the primary selective system. The difference is that the primary switches are arranged to permit operation with both switches closed, making power from both feeders always available.

4. Secondary selective. This arrangement normally operates as two electrically independent unit substations with a normally open low-voltage bus circuit breaker. The system is designed so that approximately half the system load is on each bus. In case of a failure on either of the incoming primary circuits, only one bus is affected. Opening the main breaker on the dead bus and closing the bus tie circuit breaker can restore service; this operation can be automated. Either transformer can be removed from service for maintenance, with the entire load carried through the bus tie circuit breaker. Reliability can be further enhanced by making the incoming primary feeds selective or loop feed.

B. For outdoor applications, use transformers with bio-based, non-toxic, biodegradable, natural ester, less-flammable dielectric/coolant fluid. For outdoor applications, provide low-voltage switchgear section with walk-in type weatherproof enclosure.

C. For outdoor applications, provide low-voltage switchgear section with walk-in type weatherproof enclosure.

D. For indoor applications, use dry-type transformers; refer to Section D5010.

E. Refer to Section D5010 for the low-voltage components of unit substations.

12.3 Application

A. Unit substations are especially suitable for use at large facilities that will require numerous high-current low-voltage feeders.

B. Design foundation for unit substation.

1. Where substation is in danger of encroaching on a path of egress, design for seismic anchorage.

13.0 FUSING

13.1 General

A. Fusing is the principal means of overcurrent protection in the LANL distribution system. Consult with LANL Utilities for fusing requirements. Discussion of protective relay UL 1062 – Unit Substation
applications at LANL is beyond the scope of this document. Consult with LANL Utilities for any contemplated protective relay schemes.

14.0 **Lightning Protection**

14.1 **Overhead Transmission Lines**
 A. LANL transmission lines universally employ two overhead ground wires (OHGWs) placed above the phase conductors to intercept lightning strokes. The OHGWs are grounded at every structure. This practice is consistent with guidelines in IEEE 1243.

14.2 **Overhead Distribution Lines**
 A. LANL overhead distribution lines universally employ a static ground wire placed above the phase conductor to intercept lightning strokes. The static ground wire is grounded at every pole. This practice is consistent with guidelines in IEEE 1410.
 B. Arresters are generally not used along distribution lines except at risers and at equipment taps (transformers, capacitors, metering equipment, etc.).

14.3 **Cable Risers and Pole-Mounted Equipment**
 A. Provide lightning arresters to protect underground cables and equipment insulation. For selection of arrester rating, refer to IEEE Standard C62.22 or arrester manufacturer’s guidelines.
 B. Bond arrester ground terminals to the static ground wire downlead.
 C. Design the leads from line phase conductors to arresters to be as short as practicable.

14.4 **Exterior Distribution Equipment**
 A. Provide lightning arresters to protect exterior distribution equipment such as transformers, pad mounted switches and switchgear. Use intermediate-class arresters.
 B. Install lightning protection on switchgear enclosures and control buildings to meet NFPA 780. Provide air terminals on enclosures and lightning protection grounding systems where required.

15.0 **Primary Metering**

15.1 **Applicability**
 A. Primary metering may be employed to monitor load flow characteristics on LANL primary feeders or in cases where a large facility has a dedicated medium-voltage service.

15.2 **Metering Equipment**
 A. Provide metering equipment material and installation conforming to LANL Master Specifications Section 26 2713, *Electricity Metering*.

63 The two-pole H-frame structures typically used for LANL transmission lines necessitate the use of two static ground wires.
67 An example of such a facility is the LANL Strategic Computing Complex that has a medium-voltage service with medium-voltage and low-voltage utilization equipment.
16.0 GROUNDING

16.1 Overhead Lines
A. Bond the static ground wire to pole grounds at each pole.68
B. Use buried wire, buried strips, butt plates, wire wrap, or buried plates at each pole.69
C. Bond messenger wires and guy wires to the pole ground.69
D. All pole-mounted equipment is to have at least two connections from the frame, case or tank to the system neutral conductor. The pole ground wire may be used for one or both of these connections.

16.2 Underground Lines
A. At each cable splice and termination point, specify bonding of the cable shield to ground.70
B. Design underground duct banks with a bare 4/0 AWG grounding conductor embedded in the concrete. Connect the grounding conductor in each manhole and to each equipment item served by the ductbank. Note: This is only for line-to-line systems. For systems with neutral loads, a 4/0 conductor in the concrete shall not be installed.

16.3 Services
A. For services supplied by padmount transformers, specify a grounding electrode at the transformer. Preferably, use a concrete-encased electrode. Where a concrete-encased electrode is not available, use one 3/4-inch diameter, 8-foot (minimum) long ground rod.71 Bond the primary neutral conductor, the transformer case, and the transformer secondary neutral point to the transformer grounding electrode.
B. For services supplied by pole-mounted transformers, the neutral point of the secondary of the transformer, or transformers, shall be connected to the pole ground.

17.0 RIGHTS-OF-WAY

17.1 General
A. Provide and maintain a right-of-way on both sides of each electrical utility transmission or distribution system overhead line or underground ductbank to reduce risk to the electrical utility system and allow safe and convenient access, installation, operation, inspection, maintenance, and repair of electrical utility lines and equipment.
B. Above ground structures not related to the electrical utility must not be installed in an electrical utility right-of-way if their presence will create a safety hazard or interfere with the safe and convenient access, installation, operation, inspection, maintenance, and repair of electrical utility lines and equipment. An example of a facility that would create a safety hazard is a lift station that sometimes requires use of a crane for repair or maintenance.

68 Refer to IEEE Std 1410, §7.3; for static ground wire protection to be effective, static ground wire must be grounded at every pole.
69 NESC Rule 092C1 and 2
70 In LANL systems, the grounding conductor that accompanies underground circuits is a bare 4/0 AWG copper conductor embedded in the duct bank concrete. NESC Rule 094B6 permits the use of such a conductor as a grounding electrode. This constitutes a Ufer ground, which has been demonstrated to be a highly effective means of achieving low ground resistance in poor soils.
71 The NESC has no requirement for resistance to ground of individual grounding electrodes on a multi-grounded system. Note that the user's service entrance must have its own grounding electrode system, separate from the system at the utility transformer.
C. Tall above-ground structures (e.g., light poles, antenna masts) should not be placed adjacent to an electrical utility right-of-way if they could collapse and damage utility facilities.

17.2 Overhead 15kV Class Distribution

A. Provide a right-of-way for 15 kV overhead distribution lines of 25 feet each side of the centerline, 50 feet total.

B. Provide 10 feet of right-of-way clearance around guy anchors. Measure from the guy anchor device (e.g., the anchor plate), not the point at which the guy enters the ground.

C. Provide for the clearing of rights-of-way as necessary for the safe operation and maintenance of the line.

1. The area surrounding the base of each power pole defined by a 10-foot radius shall be cleared of all vegetation that is not characterized as a “grass.”

2. The area defined by a path totaling 20 feet wide (10 feet each side of the center line) shall be cleared of any vegetation taller than 2 feet, not including grasses.

3. In the limits of the corridor from 10 feet to 25 feet either side of the center line, remove all piñon, juniper and other trees and shrubs. Plants such as chamisa and scrub oak may remain if they conform to the height criterion imposed by a 45-degree slope limit starting 10 feet outside the centerline of the corridor.

4. Outside the 50-foot right-of-way, remove “danger trees” that exceed the height criterion imposed by the 45-degree slope limit. The 45-degree criterion represents a measure of the risk of an equivalent fall-radius for oversized trees falling into power lines.

D. Refer to the Wildlife Protection article in this Section for special requirements where active nests of raptors or migratory birds are in the right-of-way.

17.3 Overhead 115 kV Transmission

A. Provide a right-of-way for 115 kV overhead transmission lines of 100 feet total.

B. Provide 10 feet of right-of-way clearance around guy anchors. Measure from the guy anchor device (e.g., anchor plate), not the point at which the guy enters the ground.

C. Provide for the clearing of rights-of-way as necessary for the safe operation and maintenance of the line.

1. The area surrounding the base of each power pole defined by a 10-foot radius shall be cleared of all vegetation that is not characterized as a “grass.”

2. The area defined by a path totaling 40 feet wide (20 feet each side of the center line) shall be cleared of any vegetation taller than 2 feet, not including grasses.

3. In the limits of the corridor from 20 feet to 50 feet either side of the center line, remove all piñon, juniper and such fuel-rich shrubs and trees. Plants such as chamisa and scrub oak may remain if they conform to the height criterion imposed by a 45-degree slope limit starting 10 feet outside the centerline of the corridor.

4. Outside the 100-foot right-of-way, remove “danger trees” that exceed the height criterion imposed by the 45-degree slope limit. The 45-degree criterion represents a measure of the risk of an equivalent fall-radius for trees falling into power lines.

72 RUS Bulletin 1724E-200, Section 5.3
17.4 Underground 15 kV Distribution

A. Along duct banks, provide an access corridor 25 feet wide. *(The access corridor does not need to be centered on the duct bank.)*

B. Around manholes and padmount equipment, provide sufficient access for maneuvering and parking line maintenance vehicles; refer to Figure G4010-2. Coordinate with LANL Utilities for access requirements to manholes on a case-by-case basis.
C. Provide separation from other underground utilities as indicated in G30 Site Civil/Mechanical Utilities.
18.0 JOINT USE

18.1 Application
A. From a standpoint of safety and reliability, the ideal arrangement is for communication and power lines to be separately supported with a separation adequate to avoid conflict. However, there may be many instances where it is impractical to provide adequate separation. In these cases, joint use of pole line structures may be considered.

18.2 Joint Use Agreement
A. Undertake joint use of pole line structures only where there is a mutual and reciprocal agreement between LANL Utilities and another user group.

18.3 Considerations
A. Before executing an agreement to share space on utility poles, consider the following factors:

1. Added weight of conductors or other equipment
2. Available pole space
3. Clearance to ground and to structures
4. Any change of the grade of construction that may be caused by the addition of other conductors or equipment. For example, NESC Table 241-1 requires that Grade B construction be used when communication conductors (or fiber optic lines) are installed beneath open 15kV conductors. In cases where an overhead line was originally built to Grade C standards, the strength reserves in a structure may not be enough to be re-classified as Grade B.
5. The susceptibility of communication circuits to induced voltages of fundamental (60Hz) and harmonic frequencies of the power circuits. Because of their immunity from induced noise, the use of fiber optic cables should be encouraged over copper cables.

19.0 ENVIRONMENTAL PROTECTION

19.1 Oil Pollution Prevention
A. Make an engineering assessment for each Project that includes oil-filled or oil-using equipment (e.g., transformers, transmission circuit breakers, diesel engine-generators) to determine the potential for oil discharge and the resulting impact.

1. Contact the LANL Water Quality and RCRA Group if the Project includes any equipment with an oil storage capacity of greater than 55 gallons.

73 NESC Handbook, Section 222.
74 NESC Section 222
75 NESC Table 253-1 provides overload factors for Grade B and Grade C construction.
76 Refer to 40 CFR 112. Environmental Protection Agency (EPA) regulations (40 CFR 112) for the prevention of water pollution due to oil spills became effective in 1974. The regulations require that an engineering assessment be made of each power facility to determine the potential for oil discharge and the resulting impact. Originally designed to prevent and control the discharge of oil from facilities directly involved in producing and handling oil for heating, cooling and manufacturing, the EPA has also included under the “storage” portions of the regulations electrical apparatus which contain oil for electrical insulating purposes (i.e. transformers). Electrical faults in electrical equipment can produce arcing and excessive temperatures that can vaporize insulating oil, creating excessive pressure that may rupture the transformer tank. In addition, operator error, sabotage or faulty equipment may also be responsible for oil release that may enter waterways.
77 EPA oil pollution prevention regulations apply if the facility meets any of the following conditions:
2. The LANL Water Quality & RCRA Group is responsible for determining whether a facility could “reasonably be expected” to discharge oil into navigable waters.

B. Prepare a Spill Prevention Control and Countermeasure (SPCC) Plan as may be required by EPA regulation or the LANL Water Quality and RCRA Group.

1. Contact the LANL Water Quality and RCRA Group for requirements and assistance in the development of an SPCC Plan.

3. The LANL Utilities Division maintains an SPCC Plan for all transformers and circuit breakers at the Laboratory with a capacity of greater than 55 gallons.

C. Select and design oil spill prevention measures (e.g., oil containment structures) as indicated by the SPCC and as recommended by the LANL Water Quality and RCRA Group.

1. Design oil spill prevention measures based on Chapter 6 of RUS Bulletin 1724E-302 and consultation with the LANL Water Quality and RCRA Group.

2. Use of oil spill prevention techniques other than containment must have advance approval of the LANL Water Quality & RCRA Group.

20.0 WILDLIFE PROTECTION

20.1 Mitigation Techniques

Note: If the links in this section do not work by clicking on them, copy and paste them into a browser.

A. Mitigate the dangers to birds and wildlife in consultation with the LANL Biological Resources team. Contact the LANL Biological Resources team during the design phase of all new line construction.

- Facilities with above-ground aggregate storage capacities greater than 1320 gallons including all containers and equipment combined with a capacity of greater than 55 gallons, or
- Facilities with a total storage capacity greater than 42,000 gallons of buried storage, or
- Facilities which, due to their location, could reasonably be expected to discharge oil into or upon the navigable waters of the United States or its adjoining shorelines.

Wildlife protection measures benefit LANL utility system performance by reducing the number of outages caused by animals. Specific legal protection to wildlife is provided by:

- US Fish & Wildlife Service enforcement actions have used the MBTA and BEPA to impose fines on utilities and require retrofit of distribution and transmission structures that present a danger to migratory birds.
B. *In bald eagle habitat areas*\(^{80}\) (e.g., TA-33, TA-70, TA-71), design new or modified overhead distribution line structures to provide not less than 60 inches of phase-to-phase conductor spacing and not less than 60 inches of phase conductor to grounded conductor or grounded object spacing.

1. Use insulating line tubes and insulator covers where 60 inch spacing is not practicable.
2. Install insulated link out for center phase at dead-ends.
3. Install insulated jumpers and bushing covers on all transformers, re-closers, and three-phase risers.
4. Install insulated jumpers on all cross arm-mounted double dead-ends and angle structures.

C. Where raptor fatality occurs or where study determines need, apply raptor and migratory bird mitigation measures as follows:

1. Install elevated perches and insulating line tubes and insulator covers where 60-inch line spacing is not available.
2. Install insulated link out for center phase at dead-ends.
3. Retrofit with insulated jumpers.

D. For locations where active nests of raptors or migratory birds are in the right-of-way:

1. Modify right of way route to avoid nest, if possible.
2. Move nest. Coordinate with the LANL Biological Resources team.
 a. Move nest to adjacent tree.
 b. Construct platform for relocating nest.
3. Schedule the cutting or removal of trees or shrubs so that the work does not occur between June 1 and July 31.

\(^{80}\) Refer to *Migratory Bird Best Management Practices Source Document for Los Alamos National Laboratory*, [LA-UR-11-06629](https://doi.org/10.2172/1037659)